Here you will see a selection of research papers showing the abilities of Xenopus oocyte extracts. These Oocyte peptide complexes have remarkable abilities to reprogram cells and active stem cells to be induced pluripotent.

Study of the DNA Damage Checkpoint using Xenopus Egg Extracts

PubMed Central

Patel, Yogin; Gowda, Vrushab; Yan, Shan


On a daily basis, cells are subjected to a variety of endogenous and environmental insults. To combat these insults, cells have evolved DNA damage checkpoint signaling as a surveillance mechanism to sense DNA damage and direct cellular responses to DNA damage. There are several groups of proteins called sensors, transducers and effectors involved in DNA damage checkpoint signaling (Figure 1). In this complex signaling pathway, ATR (ATM and Rad3-related) is one of the major kinases that can respond to DNA damage and replication stress. Activated ATR can phosphorylate its downstream substrates such as Chk1 (Checkpoint kinase 1). Consequently, phosphorylated and activated Chk1 leads to many downstream effects in the DNA damage checkpoint including cell cycle arrest, transcription activation, DNA damage repair, and apoptosis or senescence (Figure 1). When DNA is damaged, failing to activate the DNA damage checkpoint results in unrepaired damage and, subsequently, genomic instability. The study of the DNA damage checkpoint will elucidate how cells maintain genomic integrity and provide a better understanding of how human diseases, such as cancer, develop. Xenopus laevis eggextracts are emerging as a powerful cell-free extract model system in DNA damage checkpoint research. Low-speed extract (LSE) was initially described by the Masui group1. The addition of demembranated sperm chromatin to LSE results in nuclei formation where DNA is replicated in a semiconservative fashion once per cell cycle. The ATR/Chk1-mediated checkpoint signaling pathway is triggered by DNA damage or replication stress 2. Two methods are currently used to induce the DNA damage checkpoint: DNA damaging approaches and DNA damage-mimicking structures 3. DNA damage can be induced by ultraviolet (UV) irradiation, γ-irradiation, methyl methanesulfonate (MMS), mitomycin C (MMC), 4-nitroquinoline-1-oxide (4-NQO), or aphidicolin3, 4. MMS is an alkylating agent that inhibits DNA replication and activates the ATR/Chk1-mediated DNA damage checkpoint 4-7. UV irradiation also triggers the ATR/Chk1-dependent DNA damage checkpoint 8. The DNA damage-mimicking structure AT70 is an annealed complex of two oligonucleotides poly-(dA)70 and poly-(dT)70. The AT70 system was developed in Bill Dunphy's laboratory and is widely used to induce ATR/Chk1 checkpoint signaling 9-12. Here, we describe protocols (1) to prepare cell-free egg extracts (LSE), (2) to treat Xenopus sperm chromatin with two different DNA damaging approaches (MMS and UV), (3) to prepare the DNA damage-mimicking structure AT70, and (4) to trigger the ATR/Chk1-mediated DNA damage checkpoint in LSE with damaged sperm chromatin or a DNA damage-mimicking structure. PMID:23149695

Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

SciTech Connect

Ostrup, Olga; Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo; Norwegian Center for Stem Cell Research, Oslo ; Hyttel, Poul; Klaerke, Dan A.; Collas, Philippe; Norwegian Center for Stem Cell Research, Oslo


Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1.


Hansis, Christoph; Barreto, Guillermo; Maltry, Nicole; Niehrs, Christof


Animal cloning by nuclear transplantation in amphibia was demonstrated almost half a century ago and raised the question of the mechanisms and genes involved in nuclear reprogramming. Here, we demonstrate nuclear reprogramming of permeabilized human cells using extracts from Xenopus laevis eggs and early embryos. We show upregulation of pluripotency markers Oct-4 and germ cell alkaline phosphatase (GCAP) in 293T cells and human primary leukocytes. Reprogrammed leukocytes had a limited life span and did not express surface antigens characteristic of pluripotent cells, indicating that reprogramming was incomplete. Reprogramming activity was detected in egg and early embryo extractsuntil early blastula stage. Late blastula-stage extracts were not only inactive but also inhibitory to reprogramming. Screening for factors required for reprogramming identified the chromatin remodeling ATPase BRG1. Antibody depletion of BRG1 protein or expression of dominant-negative BRG1 abolished the reprogramming ability of amphibian extracts. Conversely, overexpression of BRG1 in Xenopus animal caps extended their competence from blastula to gastrula stage to respond to basic fibroblast growth factor (bFGF) treatment with induction of the mesodermal marker Xbra. Dissection of the molecular machinery using a simplified assay system may aid in achieving complete nuclear reprogramming of somatic cells for regenerative medicine. PMID:15324664

Maintenance of Multipotency in Human Dermal Fibroblasts Treated with Xenopus laevis Egg Extract Requires Exogenous Fibroblast Growth Factor-2

PubMed Central

Kole, Denis; Ambady, Sakthikumar; Page, Raymond L.


Abstract Direct reprogramming of a differentiated somatic cell into a developmentally more plastic cell would offer an alternative to applications in regenerative medicine that currently depend on either embryonic stem cells (ESCs), adult stem cells, or induced pluripotent stem cells (iPSCs). Here we report the potential of select Xenopus laevis eggextract fractions, in combination with exogenous fibroblast growth factor-2 (FGF2), to affect life span, morphology, gene expression, protein translation, and cellular localization of OCT4 and NANOG transcription factors, and the developmental potential of human dermal fibroblasts in vitro. A gradual change in morphology is accompanied by translation of embryonic transcription factors and their nuclear localization and a life span exceeding 60 population doublings. Cells acquire the ability to follow adipogenic, neuronal, and osteogenic differentiation under appropriate induction conditions in vitro. Analysis of active extract fractions reveals that Xenopus egg protein and RNAs as well as exogenously supplemented FGF2 are required and sufficient for induction and maintenance of this phenotypic change. Factors so far identified in the active fractions include FGF2 itself, transforming growth factor-β, maskin, and nucleoplasmin. Identification of critical factors needed for reprogramming may allow for nonviral, chemically defined derivation of human-induced multipotent cells that can be maintained by exogenous FGF2. PMID:24405062

DNA mismatch repair in Xenopus egg extracts: repair efficiency and DNA repair synthesis for all single base-pair mismatches.

PubMed Central

Varlet, I; Radman, M; Brooks, P


Repair of all 12 single base-pair mismatches by Xenopus egg extracts was measured by a physical assay with a sequence containing four overlapping restriction sites. The heteroduplex substrates, derivatives of M13 phage DNA, differed in sequence at the mismatch position only and permitted measurement of repair to both strands. The efficiency of repair varied about 4-fold between the most and least effectively repaired mismatches. Repair was most active with C/A and T/C mismatches but the efficiency varied depending on the orientation of the mismatch. Mismatch-specific DNA repair synthesis was also observed but the extent of repair was not always predictive of the extent of synthesis, suggesting the presence of different repair systems or different modes of mismatch recognition. Images PMID:2236005

Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

SciTech Connect

Alberio, Ramiro; Johnson, Andrew D.; Stick, Reimer; Campbell, Keith H.S. . E-mail:


The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and eggcomponents to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells byXenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells.

Developmental studies of Xenopus shelterin complexes: the message to reset telomere length is already present in the egg.


Vizlin-Hodzic, Dzeneta; Ryme, Jessica; Simonsson, Stina; Simonsson, Tomas


The 6-protein complex shelterin protects the telomeres of human chromosomes. The recent discovery that telomeres are important for epigenetic gene regulation and vertebrate embryonic development calls for the establishment of model organisms to study shelterin and telomere function under normal developmental conditions. Here, we report the sequences of the shelterin-encoding genes in Xenopus laevis and its close relation Xenopus tropicalis. In vitro expression and biochemical characterization of the Xenopusshelterin proteins TRF1, TRF2, POT1, TIN2, RAP1, TPP1, and the shelterin accessory factor PINX1 indicate that all main functions of their human orthologs are conserved inXenopus. The XlTRF1 and XtTRF1 proteins bind double-stranded telomeric DNA sequence specifically and interact with XlTIN2 and XtTIN2, respectively. Similarly, the XlTRF2 and XtTRF2 proteins bind double-stranded telomeric DNA and interact with XlRAP1 and XtRAP1, respectively, whereas the XlPOT1 and XtPOT1 proteins bind single-stranded telomeric DNA. Real-time PCR further reveals the gene expression profiles for telomerase and the shelterin genes during embryogenesis. Notably, the composition of shelterin and the formation of its subcomplexes appear to be temporally regulated during embryonic development. Moreover, unexpectedly high telomerase and shelterin gene expression during early embryogenesis may reflect a telomere length-resetting mechanism, similar to that reported for induced pluripotent stem cells and for animals cloned through somatic nuclear transfer. PMID:19329760

Fields marked with an * are required